Flexible and Robust Peat core age modeling controlling accumulation rates to asses integrated precision using radiocarbon dating

J. Andrés Christen Maarten Blaauw

Centro de Investigación en Matemáticas, CIMAT Guanajuato, GTO, México. email: *jac@cimat.mx*, web page : http://www.cimat.mx/~jac

Queen's U., Belfast, UK.

Paleochronology Building workshop, S.M.A. Aug. 2010.

Christen/Blaauw ()

- Building a chronology, ie. a relationship between age and depth, of any (peat, lake) core in paleo-studies is crucial, to match and test the synchronicity of events across sites, "leads and lags", etc.
- Radiocarbon dating (and other dating methods) are used to make a chronology.
- Prior information about accumulation rates is available.
- An integrated approach is needed.

- Building a chronology, ie. a relationship between age and depth, of any (peat, lake) core in paleo-studies is crucial, to match and test the synchronicity of events across sites, "leads and lags", etc.
- Radiocarbon dating (and other dating methods) are used to make a chronology.
- Prior information about accumulation rates is available.
- An integrated approach is needed.

- Building a chronology, ie. a relationship between age and depth, of any (peat, lake) core in paleo-studies is crucial, to match and test the synchronicity of events across sites, "leads and lags", etc.
- Radiocarbon dating (and other dating methods) are used to make a chronology.
- Prior information about accumulation rates is available.
- An integrated approach is needed.

- Building a chronology, ie. a relationship between age and depth, of any (peat, lake) core in paleo-studies is crucial, to match and test the synchronicity of events across sites, "leads and lags", etc.
- Radiocarbon dating (and other dating methods) are used to make a chronology.
- Prior information about accumulation rates is available.

• An integrated approach is needed.

- Building a chronology, ie. a relationship between age and depth, of any (peat, lake) core in paleo-studies is crucial, to match and test the synchronicity of events across sites, "leads and lags", etc.
- Radiocarbon dating (and other dating methods) are used to make a chronology.
- Prior information about accumulation rates is available.
- An integrated approach is needed.

- Blaauw, M. and Christen, J.A. (2005), "Radiocarbon peat chronologies and environmental change", *Applied Statistics*, 54(4), 805-816. Bpeat paper
- Blaauw, M. and Christen, J.A. (2005), "The Problems of Radiocarbon Dating", *Science*, **308**, 1551-1553. (Letters to the Editor.)
- Blaauw M., J.A. Christen, D. Mauquoy, J. van der Plicht y K.D. Bennett (2007). "Testing the timing of radiocarbon-dated events between proxy archives". *The Holocene*, **17**, 283-288.
- Blaauw, M., Bakker, R. Christen, J.A. Hall, V.A. y J. van der Plicht (2007), "A Bayesian framewok for age modeling of radiocarbon-dated peat deposits: case studies from the netherlands", *Radiocarbon*, **49**(2), 357-367.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Blaauw, M. and Christen, J.A. (2005), "Radiocarbon peat chronologies and environmental change", *Applied Statistics*, 54(4), 805-816. Bpeat paper
- Blaauw, M. and Christen, J.A. (2005), "The Problems of Radiocarbon Dating", *Science*, **308**, 1551-1553. (Letters to the Editor.)
- Blaauw M., J.A. Christen, D. Mauquoy, J. van der Plicht y K.D. Bennett (2007). "Testing the timing of radiocarbon-dated events between proxy archives". *The Holocene*, **17**, 283-288.
- Blaauw, M., Bakker, R. Christen, J.A. Hall, V.A. y J. van der Plicht (2007), "A Bayesian framewok for age modeling of radiocarbon-dated peat deposits: case studies from the netherlands", *Radiocarbon*, **49**(2), 357-367.

- Blaauw, M. and Christen, J.A. (2005), "Radiocarbon peat chronologies and environmental change", *Applied Statistics*, 54(4), 805-816. Bpeat paper
- Blaauw, M. and Christen, J.A. (2005), "The Problems of Radiocarbon Dating", *Science*, **308**, 1551-1553. (Letters to the Editor.)
- Blaauw M., J.A. Christen, D. Mauquoy, J. van der Plicht y K.D. Bennett (2007). "Testing the timing of radiocarbon-dated events between proxy archives". *The Holocene*, **17**, 283-288.
- Blaauw, M., Bakker, R. Christen, J.A. Hall, V.A. y J. van der Plicht (2007), "A Bayesian framewok for age modeling of radiocarbon-dated peat deposits: case studies from the netherlands", *Radiocarbon*, 49(2), 357-367.

- Blaauw, M. and Christen, J.A. (2005), "Radiocarbon peat chronologies and environmental change", *Applied Statistics*, 54(4), 805-816. Bpeat paper
- Blaauw, M. and Christen, J.A. (2005), "The Problems of Radiocarbon Dating", *Science*, **308**, 1551-1553. (Letters to the Editor.)
- Blaauw M., J.A. Christen, D. Mauquoy, J. van der Plicht y K.D. Bennett (2007). "Testing the timing of radiocarbon-dated events between proxy archives". *The Holocene*, **17**, 283-288.
- Blaauw, M., Bakker, R. Christen, J.A. Hall, V.A. y J. van der Plicht (2007), "A Bayesian framewok for age modeling of radiocarbon-dated peat deposits: case studies from the netherlands", *Radiocarbon*, **49**(2), 357-367.

Bpeat: What we can do

Figure: MSB2K peat core (a) piece-wise linear chronology, (b) uncertainty to the piece wise linear model.

-

Bpeat: What we can do

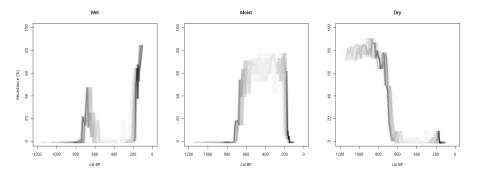


Figure: Proxy distribution including chronological error assessment.

< A

- More flexible age-depth models, that would capture subtle variations as well as long term trends.
- Robust output, considering outliers, etc.
- Robust numerical calculations.
- User friendly software, although NO plug-click-and-play: Bacon.

- More flexible age-depth models, that would capture subtle variations as well as long term trends.
- Robust output, considering outliers, etc.
- Robust numerical calculations.
- User friendly software, although NO plug–click–and–play: Bacon.

- More flexible age-depth models, that would capture subtle variations as well as long term trends.
- Robust output, considering outliers, etc.
- Robust numerical calculations.

• User friendly software, although NO plug–click–and–play: Bacon.

- More flexible age-depth models, that would capture subtle variations as well as long term trends.
- Robust output, considering outliers, etc.
- Robust numerical calculations.
- User friendly software, although NO plug-click-and-play: Bacon.

We have a series of radiocarbon determinations $y_j \pm \sigma_j$; j = 1, 2, ..., m taken along a (peat, lake, etc.) core at depths d_j . A semiparametric model is proposed to establish a relationship between the (unknown) age of peat and depth, d,

$$G(d,\theta,x) = \theta + \sum_{j=1}^{i} x_j \Delta c + x_{i+1}(d-c_i);$$

where $c_i \leq d < c_{i+1}$, i < K, and $c_0 < c_1 < \cdots < c_K$ are depths uniformly spaced along the peat core with difference Δc and $x = (x_1, x_2, \dots, x_K)$.

- That is, the core is divided into *K* equally spaced sections and *x_j* is the accumulation rate of section *j*.
- We include a coherence behaviour on the accumulation rates: $x_j = wx_{j+1} + (1 - w)\alpha_j.$
- $w \in [0, 1]$ and $\alpha_j \sim Gamma(a_\alpha, b_\alpha)$ iid, with a_α and b_α known.

- That is, the core is divided into *K* equally spaced sections and *x_j* is the accumulation rate of section *j*.
- We include a coherence behaviour on the accumulation rates: $x_j = wx_{j+1} + (1 - w)\alpha_j.$
- $w \in [0, 1]$ and $\alpha_j \sim Gamma(a_\alpha, b_\alpha)$ iid, with a_α and b_α known.

- That is, the core is divided into K equally spaced sections and x_j is the accumulation rate of section j.
- We include a coherence behaviour on the accumulation rates: $x_j = wx_{j+1} + (1 - w)\alpha_j.$
- $w \in [0, 1]$ and $\alpha_j \sim Gamma(a_\alpha, b_\alpha)$ iid, with a_α and b_α known.

- A robust, novel, model for radiocarbn determinations is used, that protects the chronology against **outliers**. (Christen, J.A. y Pérez E., S. (2009), "A new robust statistical model for radiocarbon data", *Radiocarbon*, **51**(3) (to appear)).
- A new improved numerical technique is used (reduced time calculations from hours to minutes).

- A robust, novel, model for radiocarbn determinations is used, that protects the chronology against **outliers**. (Christen, J.A. y Pérez E., S. (2009), "A new robust statistical model for radiocarbon data", *Radiocarbon*, **51**(3) (to appear)).
- A new improved numerical technique is used (reduced time calculations from hours to minutes).

Bacon chronologies

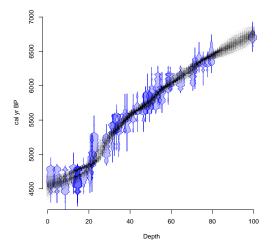


Figure: Bacon MSB2K chronology.

Christen/Blaauw ()

BACON

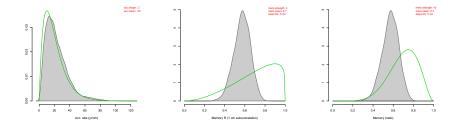


Figure: Bacon MSB2K analysis: prior (green) and posterior distributions for the tuning parameters.

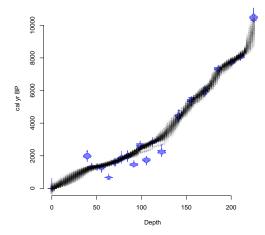


Figure: Bacon RLGH3 chronology, lake core.

Christen/Blaauw ()

BACON

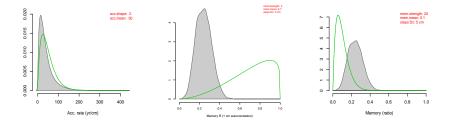


Figure: Bacon RLGH3 analysis: prior (green) and posterior distributions for the tuning parameters.

<ロト <回ト < 回ト < 回

- Bacon represents a substantial improvement over other alternatives, including Bpeat, BChron, OxCal, for chronology building using radiocarbon (and other) dates.
- We have analysed many cores already, and have show to work in low density dated sites and in lake core as well.

- Bacon represents a substantial improvement over other alternatives, including Bpeat, BChron, OxCal, for chronology building using radiocarbon (and other) dates.
- We have analysed many cores already, and have show to work in low density dated sites and in lake core as well.

¡Gracias!

