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Texts:

Colin Howson and Peter Urbach (2006) Scientific Reasoning: The
Bayesian Approach, (3rd Ed.), Open Court.

“Two English philosophers provocatively argue the case for Bayesian logic,
with a minimum of complex math. They claim that Bayesian thinking is
identical to the scientific method and give fascinating examples of how to
analyze beliefs, such as Macbeth’s doubting of the witches’ prophecy, the
discovery of Neptune on the strength of faith in Newton’s laws but zero
evidence, and why people get hooked on Dianetics.”, – Discover.

“For the first time, we have a book that combines philosophical wisdom,
mathematical skill, and statistical appreciation, to produce a coherent
system.” – Dennis V. Lindley, University College, London (ret.).
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Conditional Probability

A cornerstone of Bayesian statistics is its (alternative) definition of
probability, a definition sufficiently wide to cover many interesting cases.
Let’s start with some examples:

1 What is the probability that if I toss a coin it lands on “heads”?

2 What is the probability that your lecturer has more than the
equivalent of 50 pesos in his pocket?

3 What is the probability that it rains tomorrow?

4 What is the probability that it rained yesterday in Washington?

5 What is the probability that our Galaxy has more than 109 stars?

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 4 / 43
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More over...

A piece of maize with several kernels found in a clay pot believed to
belong to the last days of the Mexica umpire are radiocarbon dated.

What is the age of the pot?
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All probabilities are conditional
(on the person or agent speaking, assumptions made, data used, etc.).

Probability statements go beyond favorable/possible calculations.

In Bayesian statistics, all uncertainties about unknowns are measured with
a probability distribution.
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Informal Bayesian definition of Probability

Probability is an opinion hold by an agent, that may be turned into a bet
under suitable circumstances.

If you say the probability of an event E is p, the you would take a bet of
at most a = 1−p

p to 1 on E being true.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 7 / 43
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Preferences among events

Bayesian statistics, unlike other paradigms for inference, is based on a
theory, that is, a set of axioms that creates a general procedure to make
inferences. We briefly present the theory given in DeGroot (1970, cap. 6).
We begin with a quote by DeGroot (1970, p. 70):

...suitable probabilities can often be assigned objectively and
quickly because of wide agreement on the appropriateness of a
specific distribution for a certain type of problem...On the other
hand, there are some situations for which it would be very
difficult to find even two people who would agree on the
appropriateness of any specific distribution.
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Preferences among events

We have a total event Ω and a set o events @ ((Ω,@) is a mesurable set),
we have:

A � B, A ≺ B, A ∼ B.

to mean that A is less (more, equal) likely that B. Also

A � B

means that A is no more likely than B.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 9 / 43
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Axioms

A set of axioms are given for the preference relation �, for a rational
agent:

A complete ordering axiom:

Axiom

For any two events A,B ∈ @, we have exactly one of the three following
preference relations: A � B, A ≺ B, A ∼ B.

A transitivity axiom similar to this (a more general version is needed
though):

Axiom

Si A,B,C ∈ @, are three events A � B y B � C , then A � C .
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A non triviality axiom

Axiom

For A ∈ @ any event, then ∅ � A. Moreover, ∅ � Ω.

And a continuity axiom, a technicality to be able to work with continuos
distributions, like the gaussian:

Axiom

If A1 ⊃ A2 ⊃ · · · ia a decreasing sequence of events in @ and B ∈ @ is
another event such that Ai � B for all i , then ∩∞i=1Ai � B.
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The auxiliary experiment

One further axiom is needed. This axiom more or less says that some
“standard” events are added to our sets of events, and this in turn are
compared with the standard events.
Suppose for example, that we spin a roulette and all events regarding the
final position of the roulette are compared with our “relevant” events.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 12 / 43
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Bayesian Inference

Uncertainty is quantified with a probability measure

Bayes’ Theorem: Modify our probability measure with evidence

All probability is conditional (to assumptions made, agent speaking etc.)

P(· | H), with H = particular context, agent speaking etc..

Now, let B ∈ @ and observable event What is the probability of A ∈ @
given that we have observed B?

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 13 / 43
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We are talking about the event A | H,B and we may calculate its
probability by means of

P(A | H,B) =
P(A ∩ B | H)

P(B | H)
,

or

P(A | H,B) =
P(B | H,A)P(A | H)

P(B | H)
.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 14 / 43
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Let’s look closer at

P(A | H,B) =
P(B | H,A)P(A | H)

P(B | H)
.

P(A | H) we call it a priori probability or “prior”, for A.

P(A | H,B) we call it a posteriori o posterior probability for A, given
that we have observed B.

P(B | H,A) is our model...How the observables would be if we knew
A? How the data B would be if we knew what we don’t know A
(unknown parameters, for example)?

P(B | H) is a normalization constant P(· | H,B) is a modified
measure, then we may say that

P(· | H,B) ∝ P(B | H, ·)P(· | H).

Commonly, conditioning on H is only done implicitly.
JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 15 / 43
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Posterior Distribution

Suppose a random variable with Xi = 0, 1, that is Xi | p ∼ Be(p)

independent and uncertainty about p ∈ [0, 1] is quantified with f (p) and
p ∼ Beta(α, β) a priori. We obtain that X = (X1,X2, . . . ,Xn) and

P(p ≤ p0 | X) =
P(X | p ≤ p0)P(p ≤ p0)

P(X)
.

But

P(X | p ≤ p0)P(p ≤ p0) = P(X, p ≤ p0) =

∫ p0

0
f (X, p)dp.

Now f (X, p) = f (X | p)f (p) and then

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 16 / 43
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P(p ≤ p0 | X) ∝
∫ p0

0
f (X | p)f (p)dp.

The left hand side of the above expression is the posterior cdf of p, and
thus by definition its posterior density is

f (p | X) ∝ f (X | p)f (p).

Moreover

f (X | p) =
n∏

i=1

f (Xi |p) = p
Pn

i=1 Xi (1− p)n−
Pn

i=1 Xi

and
f (p) = B(α, β)−1pα−1(1− p)β−1,

and then

f (p | X) ∝ p(α+
Pn

i=1 Xi )−1(1− p)(β+n−
Pn

i=1 Xi )−1.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 17 / 43
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Therefore

p | X ∼ Beta

(
α +

n∑
i=1

Xi , β + n −
n∑

i=1

Xi

)
.

We present some priors and posterior (Beta) for p

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 18 / 43
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Example 2

We have a couple that has had 5 pregnancies and all 5 have been male,
What is the probability that thire next pregnancy results is female?
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Example 2

1 Are pregnancies independent with respect to the resulting gender?

2 Are there only two possible outputs?

Then the Bernoulli inference model explained above is valid and should be
used.
Check possibilities in R.
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Example 2

But the question is ...what prior would you use?
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Example: Normal sampling

In this case Xi ∼ N(θ, σ2), i = 1, 2, . . . , n (independent) with σ known
and θ ∼ N(θ0, σ

2
0) a priori :

f (θ | X) ∝ exp−

{
(θ − θ0)2

2σ2
0

+
n∑

i=1

(xi − θ)2

2σ2

}
.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 27 / 43
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We see that the posterior is of the form exp h(θ), where h(·) is a quadratic
function of θ. Then θ | X has a Normal distribution. Compleating the
squares we obtain

f (θ | X) ∝ exp

{
−(θ − θp)2

2σ2
p

+ C

}
,

where σ2
p = 1/(σ−2

0 + nσ−2), θp = σ2
p(µ0/σ

2
0 + nm/σ2), m = 1/n

∑n
i=1 xi

and C does not depend on θ. Then

θ | X ∼ N(θp, σ
2
p).

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 28 / 43
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Point and interval estimation

The main objective of any Bayesian analysis is finding the posterior
distribution of interest. A secondary (although very important issue) is
making proper outlines of this posterior distribution. For example, if we
have

f (θ1, θ2 | X)

(a bivariate distribution), what would you do if only θ1 is of interest?
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We need the posterior of θ1, and this may be obtained my marginalization,
that is

f (θ1 | X) =

∫
f (θ1, θ2 | X)dθ2.

This is the so called marginal posterior density of θ1 and etc.

Assuming we have the posterior f (θ | X), we only need to report it
somehow: How would you report the following distributions (see figura 2).

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 30 / 43
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Figure: How would you report the following posterior distributions?
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The concept of (point or interval or else) “estimation” in Bayesian
statistics is only understood as outlines of the relevant posterior
distribution (of course, there are good and bad outlines). Therefore, for
example, point estimation may be understood as making an outline of a
complete probability distribution with a single point, as absurd as this may
be.

We could use the expected value of the posterior distribution.
Or we could use the maximum of the posterior distribution, this is the so
called the MAP (Maximum a posteriori).
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Calculus

At the end of the day, we will need

1 f (X | θ1, θ2, . . . , θn), a model.

2 f (θ1, θ2, . . . , θn) a prior distribution for parameters.

3 The normalization constant

f (X) =

∫ ∫
· · ·
∫

f (X | θ1, θ2, . . . , θn)f (θ1, θ2, . . . , θn)dθ1dθ2 · · · dθn

4 To obtain the posterior

f (θ1, θ2, . . . , θn | X) =
f (X | θ1, θ2, . . . , θn)f (θ1, θ2, . . . , θn)

f (X)
.

5 And outlines of these posteriors, like marginal distributions etc.
f (θ1 | X) =

∫ ∫
· · ·
∫

f (θ1, θ2, . . . , θn | X)dθ2dθ3 · · · dθn.
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Hypotheses testing as an inference problem

If θ ∈ Θ our interest is

H1 : θ ∈ Θ1, H2 : θ ∈ Θ2

these hypotheses, where Θ1 y Θ2 form a partition of Θ, that is,
Θ1 ∩Θ2 = ∅ y Θ1 ∪Θ2 = Ω. In Bayesian statistics terms, given a model
f (X | θ), a a priori f (θ) and observations X = (X1,X2, . . . ,Xn), What
could it mean to “test” the above hypotheses?
Remmember:
Uncertanty is quantified with a probability measure
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Let f (θ) an a priori for θ. We calculate

P(Hi ) =

∫
Θi

f (θ | X)dθ

and “prefer” or “data support” H1 if P(H1) > P(H2) (equivalently for H2).
Moreover, we could have more than two hypotheses

Hi : θ ∈ Θi ,

and we would only require the the corresponding posterior probability for
each of them.
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Example: Hypothese testing

We have an experimental treatment for a condition which is used in 20
patients with similar cohort characteristics, from which 15 have recover
from the condition (success). The standard treatment has a probability of
success of 50%. The following hypotheses is stated The experimental
treatment is superior to the standard treatment.

The hypotheses can be translated as

H1 : θ > 0.5, H2 : θ ≤ 0.5

where θ is the probability of success of the experimental treatment. Not
much is known about the experimental treatment and a uniform (flat;
Beta( 1, 1)) prior is used. The corresponding posterior is Beta( 16, 6), see
figure.
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We have that a priori P(H2) = 0.5 and a posteriori
P(H2 | X) = 0.01330185.

H1 : θ > 0.5, H2 : θ ≤ 0.5

We may we (or your) conclude?
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Radiocarbon Calibration, one det.

We have that y ∼ N(µ(θ), σ). Considering the errors in the calibration

curve the model should be yj ∼ N
(
µ(θ),

√
σ(θ)2 + σ2

j

)
.

Therefore the likelihood is

f (Data|θ) = f (y |θ)

And the posterior is f (θ|y) ∝ f (θ)f (y |θ)

Kf (θ)
1√

σ(θ)2 + σ2
exp

{
(y − µ(θ))2

2σ2

}
,
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Solution to the Mexica pot problem

1 All radiocarbon dated corn kernels are associated to the same
calendar date θ.

2 It is assumed that the pot was made “around” the same time as the
corn was harvested.

3 Prior information on θ is provided by f (θ).

We have a series of radiocarbon determinations y1, y2, . . . , ym with their
standard errors σ1, σ2, . . . , σm corresponding to m corn kernels.

From point 2 above we have that yj ∼ N(µ(θ), σj), and we also assume
that these are independent, conditional on θ (and the standard errors).
Considering the errors in the calibration curve the model should be

yj ∼ N
(
µ(θ),

√
σ(θ)2 + σ2

j

)
.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 40 / 43



logo

Solution to the Mexica pot problem

1 All radiocarbon dated corn kernels are associated to the same
calendar date θ.

2 It is assumed that the pot was made “around” the same time as the
corn was harvested.

3 Prior information on θ is provided by f (θ).

We have a series of radiocarbon determinations y1, y2, . . . , ym with their
standard errors σ1, σ2, . . . , σm corresponding to m corn kernels.

From point 2 above we have that yj ∼ N(µ(θ), σj), and we also assume
that these are independent, conditional on θ (and the standard errors).
Considering the errors in the calibration curve the model should be

yj ∼ N
(
µ(θ),

√
σ(θ)2 + σ2

j

)
.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 40 / 43



logo

Solution to the Mexica pot problem

1 All radiocarbon dated corn kernels are associated to the same
calendar date θ.

2 It is assumed that the pot was made “around” the same time as the
corn was harvested.

3 Prior information on θ is provided by f (θ).

We have a series of radiocarbon determinations y1, y2, . . . , ym with their
standard errors σ1, σ2, . . . , σm corresponding to m corn kernels.

From point 2 above we have that yj ∼ N(µ(θ), σj), and we also assume
that these are independent, conditional on θ (and the standard errors).
Considering the errors in the calibration curve the model should be

yj ∼ N
(
µ(θ),

√
σ(θ)2 + σ2

j

)
.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 40 / 43



logo

Solution to the Mexica pot problem

1 All radiocarbon dated corn kernels are associated to the same
calendar date θ.

2 It is assumed that the pot was made “around” the same time as the
corn was harvested.

3 Prior information on θ is provided by f (θ).

We have a series of radiocarbon determinations y1, y2, . . . , ym with their
standard errors σ1, σ2, . . . , σm corresponding to m corn kernels.

From point 2 above we have that yj ∼ N(µ(θ), σj), and we also assume
that these are independent, conditional on θ (and the standard errors).
Considering the errors in the calibration curve the model should be

yj ∼ N
(
µ(θ),

√
σ(θ)2 + σ2

j

)
.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 40 / 43



logo

Solution to the Mexica pot problem

1 All radiocarbon dated corn kernels are associated to the same
calendar date θ.

2 It is assumed that the pot was made “around” the same time as the
corn was harvested.

3 Prior information on θ is provided by f (θ).

We have a series of radiocarbon determinations y1, y2, . . . , ym with their
standard errors σ1, σ2, . . . , σm corresponding to m corn kernels.

From point 2 above we have that yj ∼ N(µ(θ), σj), and we also assume
that these are independent, conditional on θ (and the standard errors).
Considering the errors in the calibration curve the model should be

yj ∼ N
(
µ(θ),

√
σ(θ)2 + σ2

j

)
.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 40 / 43



logo

Solution to the Mexica pot problem

1 All radiocarbon dated corn kernels are associated to the same
calendar date θ.

2 It is assumed that the pot was made “around” the same time as the
corn was harvested.

3 Prior information on θ is provided by f (θ).

We have a series of radiocarbon determinations y1, y2, . . . , ym with their
standard errors σ1, σ2, . . . , σm corresponding to m corn kernels.

From point 2 above we have that yj ∼ N(µ(θ), σj), and we also assume
that these are independent, conditional on θ (and the standard errors).
Considering the errors in the calibration curve the model should be

yj ∼ N
(
µ(θ),

√
σ(θ)2 + σ2

j

)
.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 40 / 43



logo

Solution to the Mexica pot problem

1 All radiocarbon dated corn kernels are associated to the same
calendar date θ.

2 It is assumed that the pot was made “around” the same time as the
corn was harvested.

3 Prior information on θ is provided by f (θ).

We have a series of radiocarbon determinations y1, y2, . . . , ym with their
standard errors σ1, σ2, . . . , σm corresponding to m corn kernels.

From point 2 above we have that yj ∼ N(µ(θ), σj), and we also assume
that these are independent, conditional on θ (and the standard errors).
Considering the errors in the calibration curve the model should be

yj ∼ N
(
µ(θ),

√
σ(θ)2 + σ2

j

)
.

JA Christen (CIMAT) Intro to Bayesian Stats. January 2008 40 / 43



logo

Solution to the Mexica pot problem

Therefore the likelihood is

f (Data|θ) = f (y1, y2, . . . , ym|θ) =
m∏

j=1

f (yj |θ)

And the posterior is f (θ|y1, . . . , ym) ∝ f (θ)
∏m

j=1 f (yj |θ), or

f (θ|y1, . . . , ym) = Kf (θ)
m∏

j=1

1√
σ(θ)2 + σ2

j

exp

{
(yj − µ(θ))2

2σ2
j

}
,

where K is a normalizing constant.
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Solution to the Mexica pot problem

Four radiocarbon dates are taken from 4 of the maize kernels. The
obtained dates are:

sim1 340 20
sim2 370 20
sim3 355 20
sim4 360 20

The posterior distribution is calculated as above, see next slide, Figure (a).

However, knowledge of basic Mexican history tells us that the Mexica
umpire fell to Conquistador Hernan Cortez in 1521 AD. Including such
prior information we obtain the next slide, Figure (b).
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Figure: Posterior distribution for the age of the maize kernels, (1) no prior
(constant), (b) a priori distribution indicating θ ≥ 429 BP (= 1521 AD).
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